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a b s t r a c t

An effective but yet simple approach is introduced to automatically attain a dynamic feedforward control
law for non-linear dynamic systems represented by discrete-time local model networks (LMN). In this
context, feedback linearization is applied to the generic model structure of LMN and the resulting input
transformation is used as model inverse. This general and automated approach for model inversion is
applicable even when the overall model complexity may be high. Thus, by representing a non-linear
dynamic system by an LMN and applying the proposed feedforward control law generation, a dynamic
feedforward control for such a non-linear system can be found automatically with the knowledge of
measured input–output data only. However, when feedback linearization is considered, the stability of
the internal dynamics plays a key role. This paper analyses the occurring internal dynamics for LMN,
which directly result from the chosen model structure in identification, and discusses the effects on the
transformed system. Finally, the effectiveness of the proposed data-driven feedforward control is
demonstrated by a simulation example as well as by an actual application to the pre-distortion of a
microelectromechanical systems (MEMS) loudspeaker with electrostatic actuation.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The automatic generation of models from measured input and
output data is nowadays an established approach in many engi-
neering disciplines (e.g. Sjöberg et al., 1995; Murray-Smith and
Johansen, 1997; Norgaard et al., 2000; Nelles, 2001; Ljung, 2010).
Commonly, such models are used to simulate the real process for
various purposes, such as managing complex traffic networks
(McKenney and White, 2013), optimum control of cogeneration
heat and power plants (Cerri et al., 2006) or model predictive
control in general (Townsend and Irwin, 2001), to name a few. In
recent years, significant research efforts have been made to also
exploit the structure of non-linear dynamic models in order to
facilitate the design of control systems (Hametner et al., 2014; Gao
et al., 2002; Deng et al., 2008).

When control tasks are considered, non-linear model struc-
tures such as local model networks (LMN) can also be used to
determine control laws and their parameters (e.g. Hametner et al.,
2013; Hafner et al., 2000). In general, LMN are a well-established
multiple-model approach for data-driven modelling of non-linear
(N. Euler-Rolle).
systems (e.g. Gregorčič and Lightbody, 2007, 2010; Hametner and
Jakubek, 2011; Nelles, 2001). This model architecture interpolates
between different local models, each valid in a certain operating
regime which offers a versatile structure for the identification of
non-linear dynamic systems. Each operating regime represents a
simple model, e.g. a linear regression model (Murray-Smith and
Johansen, 1997), whose parameters are found by identification.
Although the complexity of LMN increases with the amount of
local linear models to form a sophisticated non-linear model, the
model structure still remains generic. This fact is beneficially
exploited when automatically generating a dynamic feedforward
control law for arbitrarily complex LMN.

To obtain such a dynamic feedforward control law, usually
some kind of model inversion has to be performed. Inspired by
Silverman (1969), who investigated invertibility for time varying
linear systems, Hirschorn (1979) extended the basic principles of
system inversion to non-linear systems. Despite numerous
research efforts (e.g. Isidori and Byrnes, 1990; Devasia et al., 1996),
system inversion still remains a challenging task, which in general
requires a thorough analysis and knowledge of the non-linear
system under consideration.

However, in the presented approach, by considering the gen-
eric model structure of LMN, the application of feedback linear-
ization automatically leads to an output–input relation, which is
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suitable as dynamic feedforward control law for the underlying
non-linear process. Thus, a model inverse can directly be found
from measured input–output data only.

Originally the concept of feedback linearization has been
introduced by Byrnes and Isidori (1984) for the first time. Basically,
a non-linear system is linearized exactly by using a non-linear
coordinate transformation such that the resulting transformed
system consists of an input transformation, linear external
dynamics and unobservable internal dynamics. The latter repre-
sent a non-linear equivalent to the notion of transmission zeros in
linear system theory. A historical perspective of this wide field as
well as a detailed review of the feedback linearization technique is
given by Isidori (1995) or Slotine and Li (1991). Feedback linear-
ization for discrete-time systems, as it is necessary with LMN, has
been addressed for example by Lee et al. (1987), Monaco and
Normand-Cyrot (1987) or Grizzle (1986). For continuous-time
systems, feedback control using neural networks in combination
with feedback linearization approaches has already been applied
(He et al., 1998; Chien et al., 2008).

Both, LMN (Murray-Smith and Johansen, 1997; Norgaard et al.,
2000; Nelles, 2001; Maass et al., 2009; Novak and Bobal, 2009;
Hametner et al., 2014) and the concept of feedback linearization
are by themselves well established concepts in academia as well as
in industry (e.g. Kotman et al., 2010; Moulin and Chauvin, 2011;
Nielsen et al., 2010; Tuan et al., 2013). However, combining both
ideas offers the opportunity to provide a substantial tool to
dynamically feedforward control any arbitrary non-linear process
with knowledge of measured input–output data only. The
approach taken in this paper supersedes the need for an in-depth
knowledge of the underlying non-linear process as the generic
model structure of LMN allows for an automated generation of a
feedforward control law. Besides introducing the concept of
automatic generation of feedforward control laws, this paper also
examines those pitfalls, which are associated with the method,
namely the stability of the internal dynamics, respectively, the
zero dynamics. According to Isidori (2013), at least “systems in
which the zero dynamics are unstable are still a substantially unex-
plored and open area of research”. Therefore, in the present con-
tribution an analysis of the more general internal dynamics (as
compared to zero dynamics or a minimum phase property) for
LMN is given. In addition, an overview of how to choose the
architecture of the LMN in order to obtain a model with full
relative degree, which is preferable for feedforward control,
is given.

Typically, feedforward control is used as an enhancement of
common feedback control strategies. In Fig. 1 a so-called two-
degrees-of-freedom control scheme is depicted where the design

of the feedforward part Σ̂
�1
ol and the feedback part ΣC is inde-

pendent of each other. If parameter uncertainties or model errors

occur in Σ̂ ol and Σ̂
�1
ol , respectively (e.g. due to measurement noise

on the identification data), the feedback part will still track the
desired trajectory and try to compensate for the inaccuracies.
However, only stable plants should be considered in a control
scheme including a feedforward part.

Feedforward control of LMN has been considered in the lit-
erature before. Karer et al. (2011) applied feedforward control to a
dynamic hybrid fuzzy model of a batch reactor with both discrete
and continuous states. Therein the partitioning considers the
Fig. 1. Two-degrees-of-freedom control scheme.
output only and the validity functions are triangular. In the present
contribution also the input can be used as a dimension of the
partition space, which is an important prerequisite for the parti-
tioning of many non-linearities where off-equilibrium conditions
arise (Johansen et al., 2000). In addition, a hierarchical dis-
criminant tree, which is determined from input–output data only
(Hametner and Jakubek, 2011; Jakubek and Hametner, 2009),
yields the validity functions instead of utilizing fuzzy rules.
Nentwig and Mercorelli (2008) proposed an algorithm for a
combined analytical/numerical inversion of a static fuzzy neural
network applied to a throttle valve control. In contrast, the pre-
sented approach in this paper also holds for dynamic LMN and in
addition directly incorporates non-linear validity functions of
arbitrary shape into the automatic feedforward control law gen-
eration. Hagan et al. (2002) propose NARMA-L2 control, which
incorporates an approximation of a non-linear autoregressive-
moving average (NARMA) model found by non-linear identifica-
tion. The resulting NARMA-L2 model contains two separate sub-
networks such that the next controller input u(k) is not contained
inside the non-linearity and can therefore be used to solve for a
reference tracking control input. However, a specific model
structure is required in the identification. Boukezzoula et al. (2003,
2007) analytically invert a Takagi–Sugeno fuzzy model by feed-
back linearization for designing a fuzzy controller, although the
submodels are inverted locally and an additional criterion has to
be considered in each time step to choose from multiple solutions.

In a direct data-driven design approach such as direct inverse
control (e.g. Norgaard et al., 2000; Hunt et al., 1992) depicted in
Fig. 2(b), the inverse model is identified from input–output data
directly. In contrast, in the presented approach outlined in Fig. 2
(a), the inverse is found from an existing plant model. The latter
procedure offers the opportunity to exploit the existing and gen-
eric model structure of local model networks. By evaluating the
relative degree and the resulting internal dynamics, this approach
allows a far deeper insight and a methodology to analyse and
understand the resulting feedforward control law. In addition, no
dedicated identification procedure or special model structure is
required.

Numerous applications in various branches of the industry
benefit from the presented approach as merely adequately mea-
sured input–output data are required to identify a model (i.e. an
LMN) of almost any arbitrary non-linear dynamic process. To
automatically obtain a feedforward control law for such a process,
the LMN is represented in discrete-time state space form, which is
then transformed into a feedback linearized normal representa-
tion. To determine the required feedforward input value for the
desired reference trajectory, an input transformation is utilized.
Therein the current and past model outputs are replaced by the
desired reference values. Besides an illustrative example, an
application of the presented approach, a microelectromechanical
Fig. 2. Comparison of (a) the feedforward control law generation using feedback
linearization of a LMN plant model and (b) a direct data-driven control approach.
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systems (MEMS) loudspeaker with electrostatic actuation, is con-
sidered. In a laboratory setup, data-driven feedforward control is
applied for pre-distortion. Experimental validation shows that the
non-linear characteristic of the MEMS loudspeaker can be linear-
ized successfully using the presented approach.

Subsequently, in Section 2 the LMN and its state space repre-
sentation is presented. An overview of feedback linearization in
general and the description of the feedforward control law gen-
eration is given in Section 3. In Section 4 the resulting internal
dynamics are analysed and in Section 5 an illustrative example as
well as the experimental application is shown.
2. Local model networks

To apply the feedback linearization technique, a dynamic single
input, single output local model network (LMN; Nelles, 2001;
Gregorčič and Lightbody, 2007, 2010; Hametner and Jakubek,
2011) is considered. Due to the application of feedforward control,
it is assumed to be stable (Hametner et al., 2014). The LMN is given
in a (non-minimum realization) state space representation of the
form

xiðkþ1Þ ¼ AixðkÞþBiuðkÞþf i ð1aÞ

xðkþ1Þ ¼
X
iAI

Φið ~xðkÞÞxiðkþ1Þ ð1bÞ

ŷðkÞ ¼ cTxðkÞ; ð1cÞ

For the indices i of the local models an ordered set is defined as

I ¼ ðiAN j 1r ir IÞ ð2Þ

where I denotes the user prescribed number of local linear models.
The validity functionsΦiðkÞ represent a weighting of the local state
vectors and will be explained later in this section. Further, the
architecture of a dynamic local model network in state space
representation is depicted in Fig. 3, where q�1 represents the time
shift operator. A detailed description of the state space notation (1)
can be found in Hametner et al. (2013). Subsequently, only a short
summary of notation is given. Note that the incorporation of an
affine term f i is necessary to obtain an arbitrary close approx-
imation of the linear time-varying dynamic system, which results
from dynamic linearization about trajectories of general non-
linear systems (Johansen et al., 2000).
Fig. 3. Architecture of a l
Basically, the state vector definition can be chosen arbitrarily.
Although, by choosing the state vector xðkÞARðM�1þNÞ�1 as

x (k) =

u(k − M +1)
...

u(k − 1)

ŷ(k − N +1)
...

ŷ(k)

, ð3Þ

the same state vector definition holds for each local model. Thus,
the treatment and assessment of equations is simplified con-
siderably. In addition it is assumed that all local models possess
the same relative degree δlocal according to the well-known result
for linear systems

cTAj
iBi ¼ 0 8 joδlocal�1; iAI ð4aÞ

cTAδlocal �1
i Bia0 8 iAI : ð4bÞ

This is fulfilled by the local system matrices AiARðM�1þNÞ�ðM�1þNÞ,
which contain time shifts of the input (above the dashed line) as well
as those of the output

A i =

I M−1 0M−1× N

0N−1× M−1 IN

b(i)T a(i)T

, ð5Þ

where abbreviations are defined as

I j ¼ 0j�1�1 Ij�1
� �

; I jARðj�1Þ�j ð6Þ

I j ¼
0j�1�1 Ij�1
� �

01�j

" #
; I jARj�j ð7Þ

for an arbitrary size j with I denoting the identity matrix. The last row
of (5) contains the parameters bðiÞTAR1�ðM�1Þ of the input and of the
autoregressive part aðiÞTAR1�N in the form

bðiÞT ¼ bðiÞM ⋯ bðiÞ3 bðiÞ2
h i

ð8Þ

aðiÞT ¼ aðiÞN … aðiÞ1
h i

: ð9Þ

The input vector BiARðM�1þNÞ�1 is defined as
ocal model network.
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B i =

0M− 2 × 1

1

0N−1× 1

b(i)
1

, ð10Þ

and the term f iARðM�1þNÞ�1 in (1) introduces a local affine term

f i ¼
0M�2þN�1

cðiÞ

� �
: ð11Þ

The output matrix cTAR1�ðM�1þNÞ is constant:

cT ¼ 01�M�2þN 1
� �

: ð12Þ
However, this formulation is only one way amongst many

others to represent an LMN. Exactly the same input–output
behaviour, as it results from (1), can also be described by notation
as difference equation

ŷðkÞ ¼
X
iAI

Φið ~rðkÞÞ
X

mAM
bðiÞmuðkÞq�m�

X
nAN

aðiÞn ŷðkÞq�nþcðiÞ
" #

; ð13Þ

which is especially useful in the identification procedure. Each local
parameter in (8)–(11) is related to (13) through the sets of the ordersM
of the used time delays of the input and of the feedback output orders
N . Thus, the individual entries bm with index fmAN j 2rmrMg in
(8), b1 in (10) and an with index fnAN j 1rnrNg in (9) are found
according to

bm ¼ bðiÞm mAM
0 otherwise

(
ð14Þ

an ¼ aðiÞn nAN
0 otherwise:

(
ð15Þ

Therefore, the resulting state space system order relates to the set
according to N¼maxðN Þ and the maximum time shift of the input to
M¼maxðMÞ. The number of elements of the setsM andN is referred
to as jMj and jN j , respectively.

The validity functions Φið ~rðkÞÞ in (13) andΦið ~xðkÞÞ in (1) govern
the weighted aggregation of the local model outputs. They are
constrained to form a partition of unityX
iAI

Φi ¼ 1 ð16Þ

0rΦir1 8 iAI : ð17Þ
The appropriate selection of the shape of the validity functions and
its parametrization depends on the problem under investigation.
In the application example in Section 5, continuously differenti-
able sigmoid functions are used as validity functions. They are
found by optimization and a hierarchical discriminant tree
(Hametner and Jakubek, 2011; Jakubek and Hametner, 2009).
However, the applicability of the presented feedforward control is
not influenced by the shape of the validity functions. Therefore,
concerning the identification task and related topics reference may
be given to the literature (Sjöberg et al., 1995; Murray-Smith and
Johansen, 1997; Norgaard et al., 2000; Nelles, 2001).

The input vector ~rðkÞ of the validity functions Φið ~rðkÞÞ, which
spans the so-called partition space, can be chosen differently from
the sets M and N
~rðkÞ ¼ uðk� ~MÞ ŷðk� ~N Þ

h i
; ~rðkÞAR1� ~O ; ð18Þ

although the sets ~M and ~N are usually subsets of M and N . They
are also user defined. Note that due to the time shifted evaluation
of the update equation for xiðkþ1Þ in (1) as compared to ŷðkÞ in
(13) the validity functions in state space notation are determined
using ~xðkÞ ¼ ~rðkþ1Þ.
Usually, the partition space is spanned by input and output
variables or by output variables only. Choosing either the input or
output as the only variable for the partition space would be suf-
ficient if only equilibrium models were considered. However,
when strong transient operating conditions occur, the respective
second quantity has to be added to the partition space in order to
distinguish between near-equilibrium conditions and their off-
equilibrium counterparts (Johansen et al., 2000).

When the input appears in ~rðkÞ it is reasonable to choose the
lowest order of the input used in the partition space equally to the
lowest input order in the regressor (i.e. minð ~MÞ ¼minðMÞ).
Otherwise the system dynamics would change even before the
input variable takes effect as a system input.

Additionally, an excitation by the local affine term in combi-
nation with the validity functions would be possible, which acts as
an additional input

P
iAIΦið ~rðkÞÞcðiÞ containing a lower order of

the input in ~rðkÞ than in the regressor itself.
When the state vectors are blended as described above, (1) can

be rewritten as

xðkþ1Þ ¼ AðΦkÞxðkÞþBðΦkÞuðkÞþ f ðΦkÞ ð19aÞ

ŷðkÞ ¼ cTxðkÞ; ð19bÞ
where the appearing matrices are found by weighted aggregation
from

AðΦkÞ ¼
X
iAI

Φið ~xðkÞÞAi ð20Þ

BðΦkÞ ¼
X
iAI

Φið ~xðkÞÞBi ð21Þ

f ðΦkÞ ¼
X
iAI

Φið ~xðkÞÞf i; ð22Þ

using the notation of the membership functions ΦkARI�1 in
vector form

Φk ¼Φð ~xðkÞÞ ¼

Φ1ð ~xðkÞÞ
⋮

Φið ~xðkÞÞ
⋮

ΦIð ~xðkÞÞ

2
6666664

3
7777775
: ð23Þ

When LMN are considered, in general two ways of interpolat-
ing between the local models can be pursued: either a weighted
aggregation of the local model outputs or a blended combination
of model parameters (Gregorčič and Lightbody, 2008). Using
output blending, the global output of the model is determined as a
linear combination of the local model outputs. Thus, the individual
models could also be represented by completely different types of
model structures. The drawbacks of output blending are a reduced
transparency of the overall model and the requirement that each
local model must be stable. As an alternative approach, the para-
meters of the local models can be blended, if all of them comprise
the same structure. Using this approach, the transparency is
increased as the overall model structure remains the same as that
of the local models. Due to the incorporation of off-equilibrium
local models, whose equilibrium points do not lie in the region of
their validity (Johansen et al., 2000), the parameter blended LMN
is not necessarily unstable if unstable off-equilibrium local models
are utilized (Hametner et al., 2014).
3. Feedforward control

The automatic generation of a dynamic feedforward control
law is accomplished by feedback linearizing the LMN, which can
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be readily achieved due to its generic model structure. In the
sequel the feedback linearization technique for discrete-time sys-
tems is shortly reviewed in general (adapted from Henson and
Seborg, 1997), which is then applied to the non-linear structure of
LMN in Section 3.2.

3.1. Feedback linearization of discrete-time systems

The input–output linearization problem for a general discrete-
time non-linear non-affine system

xðkþ1Þ ¼ FðxðkÞ;uðkÞÞ ð24aÞ

yðkÞ ¼ hðxðkÞÞ ð24bÞ
is considered (Lee et al., 1987; Monaco and Normand-Cyrot, 1987;
Grizzle, 1986). The composition of the scalar function hðxÞ : Rd�1

-R and the vector function FðxÞ : Rd�1-Rd�1; with d describing
the system dimension, is defined as h○FðxÞ ¼ hðFðxÞÞ. Higher order
compositions are defined recursively: h○F jðxÞ ¼ h○F j�1ðFðxÞÞ,
where h○F0ðxÞ ¼ hðxÞ. The composition operator plays the same
role as does the Lie derivative in the continuous-time case.

The discrete-time system (24) is said to have relative degree δ
at the point ðx0;u0Þ if
∂

∂uðkÞ h○F jðxðkÞ;uðkÞÞ
� �

¼ 0 8 jrδ�1 ð25Þ

for all ðx;uÞ in a neighborhood of ðx0;u0Þ and
∂

∂uðkÞ h○Fδðx0;u0Þ
� �

a0: ð26Þ

Thus, by definition of the relative degree all compositions fulfilling
jrδ�1 are independent of the current input u(k) and can be
written as

h○F jðxðkÞ;uðkÞÞ ¼ h○F j
0ðxðkÞÞ; 1r jrδ�1: ð27Þ

To represent the system (24) in normal form, a diffeomorphism
½ξTðkÞ;ηTðkÞ�T ¼ΓðxðkÞÞ defining the new coordinates ξð�Þ and ηð�Þ is
constructed as follows. The ξð�Þ coordinates are chosen as

ξjðkÞ ¼ h○F j�1
0 ðxðkÞÞ; 1r jrδ: ð28Þ

The remaining d�δ states

ηjðkÞ ¼Γδþ jðxðkÞÞ; 1r jrd�δ ð29Þ
can be chosen arbitrarily such that Γ is invertible and

∂
∂uðkÞ Γδþ j○FðxðkÞ;uðkÞÞ

� 	¼ 0; 1r jrd�δ ð30Þ

holds. As a result, the system in normal form is

ξ1ðkþ1Þ ¼ ξ2ðkÞ
ξ2ðkþ1Þ ¼ ξ3ðkÞ

⋮

ξδðkþ1Þ ¼ h○FδðΓ�1ðξðkÞ;ηðkÞÞ;uðkÞÞ ¼ vðkÞ
ηðkþ1Þ ¼ qðξðkÞ;ηðkÞÞ
yðkÞ ¼ ξ1ðkÞ; ð31Þ
where qðξðkÞ;ηðkÞÞ represents the unobservable ðd�δÞ-dimen-
sional internal dynamics

qjðξðkÞ;ηðkÞÞ ¼Γδþ j○FðΓ�1ðξðkÞ;ηðkÞÞÞ; 1r jrd�δ; ð32Þ
which are independent of uð�Þ due to (30). By introducing the
virtual input v(k), that part of system (31), which is described by
the external states ξðkÞ, can be considered as a chain of δ time-
shifts with output y(k) and input v(k). These external dynamics are
therefore linear and its virtual input v(k) is found by a non-linear
algebraic equation representing the input transformation

vðkÞ ¼ h○FδðxðkÞ;uðkÞÞ: ð33Þ
If the relative degree equals the system order, i.e. δ¼ d holds, the
original system (24) is said to have full relative degree and no
internal dynamics exist. Conditions for the relative degree of LMN
are explicitly derived in the next section. As in the continuous-
time case, for any feedforward or feedback control law the unob-
servable internal dynamics need to be asymptotically stable.

3.2. Feedback linearization of local model networks

For the application of feedback linearization, the LMN is con-
sidered in state space representation (1) such that the general
system (24) is defined as

FðxðkÞ;uðkÞÞ ¼ AðΦkÞxðkÞþBðΦkÞuðkÞþ f ðΦkÞ ð34aÞ

hðxðkÞÞ ¼ cTxðkÞ: ð34bÞ
To determine the relative degree, (25) and (26) are considered,
respectively. First, by evaluating (25) for j¼1, it is checked whether
the relative degree is δ41, which is true if

∂
∂uk

bTðΦkÞ aTðΦkÞ
h i

xðkÞþb1ðΦkÞuðkÞþcTf ðΦkÞ
� �

¼ 0: ð35Þ

Eq. (35) holds, if b1ðΦkÞ ¼ 0 and ∂Φk
∂uk

¼ 0. The latter condition
states that the partitioning at point in time k has to be indepen-
dent of u(k).

Subsequently, through repeated evaluation of (25) with
increasing values of j, the relative degree δ is determined as the
lowest integer, which fulfills (26). For an LMN this evaluation can
be reformulated as two independent conditions concerning the
parameters and validity functions, respectively:

bjðΦkÞ ¼ 0; 8Φk4 8 joδ ð36Þ

∂Φkþ j

∂uðkÞ ¼ 0; 0r jrδ�2: ð37Þ

Thus, the relative degree δ is determined primarily by the index of
the first non-zero numerator parameter bj (i.e. bj ¼ 0; 8 joδ) such
that δ¼minðMÞ holds. In case of output partitioning only (i.e.
Φk ¼Φðŷðkþ1� ~N ÞÞ), the validity functions are independent of
uð�Þ and (37) is irrelevant. When considering input partitioning,
usually the partitioning is chosen such that ~MDM. Otherwise the
system dynamics could change even before the input variable
takes effect as a system input. Using the definitions ~xðkÞ ¼ ~rðkþ1Þ
and (18), the second condition (37) is fulfilled for

δrminð ~MÞ: ð38Þ
In general the relative degree can be formulated as

δ¼minð ~M [ MÞ: ð39Þ
When the state transformation (28) is applied to the structure of
the LMN (34) one gets

ξ1ðkÞ ¼ cTxk
ξ2ðkÞ ¼ cT AðΦkÞxkþ f ðΦkÞ

� 	
ξ3ðkÞ ¼ cT AðΦkþ1ÞAðΦkÞxkþAðΦkþ1Þf ðΦkÞþ f ðΦkþ1Þ

� 	
⋮

ξδðkÞ ¼ cT AðΦkþδ�2Þ⋯AðΦkÞxkþAðΦkþδ�2Þ⋯AðΦkþ1Þf ðΦkÞ
�

þ⋯þf ðΦkþδ�2Þ
	 ð40Þ

and the input transformation (33) in original coordinates yields

vðkÞ ¼ cT AðΦkþδ�1Þ⋯AðΦkÞxkþAðΦkþδ�1Þ⋯AðΦkþ1ÞBðΦkÞuðkÞ
�

þAðΦkþδ�1Þ⋯AðΦkþ1Þf ðΦkÞþ⋯þf ðΦkþδ�1Þ
�
: ð41Þ

The remaining d�δ states (29) of the internal dynamics have to be
chosen such that Γ is diffeomorph and the internal dynamics are
independent of the input, i.e. such that (30) is satisfied. Thus, the
internal dynamics can be analyzed by using the affine
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diffeomorphism

(k)

(k)
= (x (k)) = T(k)x(k) + (k), ð42Þ

with the validity function dependent transformation matrix

T (k) =
T1(k)

T2(k)
=

cT

cTA( k)
...

cT A( k + − ) · · · A( k)

T2 (k)

2

ð43Þ

and χ ðkÞ containing local affine terms

(k) =

0

cT f ( k)

cT A( k+1) f ( k) + cT f ( k+1)
...

cT A( k+ − 2) · · · A( k+1) f ( k) + · · ·

+ cT f ( k+ − 2)

0

ð44Þ

The lower part T2ðkÞ of the transformation matrix has to be
determined such that TðkÞ is nonsingular. Thus, T2ðkÞ must be
orthogonal to T1ðkÞ. For this purpose, the kernel NT

1ðkÞARd�δþ1�d

of T1ðkÞ
NT

1ðkÞ ¼ kerðT1ðkÞÞ ð45Þ
is used to define

T2ðkÞ ¼VTðkÞNT
1ðkÞ ARd�δ�d ð46Þ

with an arbitrary matrix VTðkÞARd�δ�d�δþ1. However, when
choosing VTðkÞ it has to be ensured that T2ðkÞ has full rank to yield
a regular transformation TðkÞ.

Further, according to (30), the input must not influence the
internal dynamics directly, which means that

T2ðkÞBðΦkÞ ¼! 0 ð47Þ
is required. Replacing T2ðkÞ by its definition (46) yields

VTðkÞNT
1ðkÞBðΦkÞ ¼ 0: ð48Þ

From this relation, matrix VTðkÞ can be determined

VTðkÞ ¼ kerðNT
1ðkÞBðΦkÞÞ; ð49Þ

which in combination with (46) completes the nonsingular
diffeomorphism.

The transformed system can be written as:

(k +1)

(k +1)
= A(k)

(k)

(k)
+ B(k)u(k) + f (k) ð50Þ

with

(k)

(k)
=

(k)

(k)
− (k) ð51Þ

Ã(k) =
T1 (k + 1)

T2 (k + 1)
A( k)

T1 (k)

T2 (k)

− 1

ð52Þ

B̃ (k) =
T 1 (k +1)

T 2 (k +1)
B ( k) ð53Þ
f̃ (k) =
T1 (k +1)

T2 (k +1)
f ( k). ð54Þ

Substituting the input transformation (41) for u(k) into (50) yields
the system in normal form

(k +1)

(k +1)
=

I 0 × d −

Ã (k) Ã (k)

(k)

(k)

+

0 − 1× 1

v (k)

0d− × 1

+ f̃ (k).

ð55Þ

The substitution

v(k) = Ã ( )(k)
(k)

(k)
+ B̃ ( )(k)u(k) + f̃ (k) ð56Þ

represents the input transformation (41) expressed in the new
coordinates. The scalar ~BðδÞðkÞ and the matrix ~AðδÞðkÞ denote row
number δ of the transformed input vector ~BðkÞ and system matrix
~AðkÞ, respectively.

The block diagram of the resulting feedback linearized model
structure with affine terms is depicted in Fig. 4. Therein, those
blocks, which represent the internal dynamics, are framed by a
dashed line and the input transformation is outlined by a grey
background. In the normal form system (55), the system matrix
ends up to have a block structure. The internal dynamics are
described by the trajectory dependent right lower block matrix ~Aηη

ðkÞARd�δ�d�δ with the external states ~ξðkÞ acting as excitation
with ~AξηðkÞ ~ξðkÞARd�δ�1 as the left lower block matrix. In return,
the resulting internal states ~ηðkÞ are used in the input transforma-
tion to evaluate the relation between the physical input u(k) and the
virtual input v(k) to the external dynamics. For a detailed analysis of
the internal dynamics’ structure and ~AηηðkÞ see Section 4.1.

3.3. Feedforward control law generation

Due to its generic model structure, the general normal form
representation (31) of an LMN is readily and automatically avail-
able by applying the system transformation described in the pre-
vious section. For such a normal system, the implementation of
dynamic feedforward control is straightforward.

If the transformed input (33) is chosen such that vðkÞ ¼wðkþδÞ,
where wð�Þ describes the desired output trajectory, exact tracking
yðkþδÞ ¼wðkþδÞ can be achieved. The physical input u(k) can be
found in the original coordinates by solving

wðkþδÞ�h○FδðwðkÞ;uðkÞÞ ¼ 0; ð57Þ
where wð�Þ denotes the state vector xð�Þ with the values of yð�Þ
being replaced by the reference values wð�Þ. In particular, (41) is
used for an LMN. Besides the replacement of the actual output
values within the state vector xð�Þ with the reference values wð�Þ,
also the partitioning is found from the reference instead of the
actual output only (i.e. Φk ¼Φðwðkþ1� ~N Þ;uðkþ1� ~MÞÞ). Thus,
the feedforward control law

w kþδð Þ�cT AðΦkþ δ�1Þ⋯AðΦkÞwkþAðΦkþ δ�1Þ⋯AðΦkþ1ÞBðΦkÞuðkÞ
�

þAðΦkþ δ�1Þ⋯AðΦkþ1Þf ðΦkÞþ⋯þ f ðΦkþ δ�1Þ
�¼ 0 ð58Þ

does not use any actual values ŷð�Þ of the output.
Alternatively, the feedforward control law can be obtained by

considering the input transformation in the transformed coordi-

nates ~ξ
TðkÞ ~ηTðkÞ

� �
. Nevertheless, in either case the stability of the



N. Euler-Rolle et al. / Engineering Applications of Artificial Intelligence 50 (2016) 320–330326
internal dynamics has to be checked if they exist, i.e. if the system
has less than full relative degree. Therefore a system transforma-
tion is necessary anyhow.

In the subsequent section, a system classification concerning
the internal dynamics as well as its implication on the choice of
model structure for the parameter estimation is given.
4. System analysis

The applicability of an LMN in feedforward control is decisively
determined by the relative degree and the internal dynamics,
respectively. While the stability of the internal dynamics depends
on the actual values of the estimated parameters only, the relative
degree is already predefined as given in (39) by the choice of the
model structure before the actual parameter identification takes
place. When the relative degree equals the system order, the
system is said to have full relative degree. In this case there are no
internal dynamics and feedback linearization is straightforward.

When the structure of an LMN is considered, in particular the
choice of input partitioning as well as the orders of the input used in
the regressor are relevant for the relative degree and thus for the
internal dynamics. In Table 1 the implications of these choices are
shown in an overview. In the simplest case, the partitioning considers
the output only (Φk ¼Φðŷðkþ1� ~N ÞÞ, i.e. ~M ¼∅) and a local model
structure with no numerator can be induced by the choice of the
regressor using Mj j ¼ 1. In this case, the LMN will have full relative
degree and thus no internal dynamics. This also holds for input par-
titioning (i.e. Φk ¼Φðŷðkþ1� ~N Þ;uðkþ1� ~MÞÞ), as long as the
chosen order matches that of the regressor, i.e. ~M ¼M with Mj j ¼ 1.
It is reasonable to choose the lowest order of the input used in the
partition space equally to the lowest input order in the regressor

minð ~MÞ ¼minðMÞ; ð59Þ
which is denoted as “causal choice” in Table 1. Otherwise the system
dynamics would change even before the input variable takes effect as
a system input. As soon as multiple input orders are used in the
regressor, the stability of the internal dynamics has to be checked
independent of the partitioning under consideration.

When only output partitioning is used, the current input u(k)
appears in the feedforward control law (58) or (41) only once and
an explicit solution is possible. In case of input partitioning, parti-
cularly when (59) holds, (58) or (41), respectively, is an implicit
Fig. 4. Structure of a feedback linearized LMN for δZ
equation. The unknown current input u(k) appears within the
product containing the input vector in the equation directly, as well
as within the membership function Φkþδ�1 as a partition variable.
Thus, an explicit solution is not possible. The slightly more complex
task of evaluating the implicit feedforward control law is achieved
numerically using the Newton–Raphson method for example.

4.1. Internal dynamics

The stability assessment of the internal dynamics for non-linear
systems is generally very hard to tackle even in the single input,
single output case (Isidori, 2013). Although the internal dynamics of
the normal form system (55), which can be rewritten as

~ηðkþ1Þ ¼ ~AηηðkÞ ~ηðkÞþ ~AξηðkÞ ~ξðkÞ; ð60Þ

have a neat structure, their behaviour depends on the desired tra-
jectory wðkÞ in two ways. On the one hand, it excites the internal
dynamics through the external states, which contain time shifts of
the desired trajectory only, cf. e.g. (55). On the other hand, the
behaviour of the internal dynamics, which is determined by ~AηηðkÞ as
the right lower block of ~AðkÞ, varies highly non-linearly with the
trajectory in the following way. The actual system matrices of the
original system (34) depend on the membership functionsΦk. In the
feedback linearization, the transformation matrix TðkÞ and its affine
term χ ðkÞ incorporate various membership function values Φk to
Φkþδ�2, which are found by evaluation of the partitioning along the
past and future desired trajectory. These values are used in the
matrix T1ðkÞ directly as well as in the kernel approach to find T2ðkÞ. It
is the resulting transformation matrix TðkÞ that finally determines
the transformed normal form system (55) and together with the
affine term χ ðkÞ accounts for the sophisticated non-linear behaviour.
Thus, each matrix itself depends on the trajectory wðkÞ, whereas the
resulting system matrix ~AηηðkÞ of the internal dynamics depends on
products of such matrices as well as their kernel.

Due to this highly non-linear and trajectory dependent model
structure, usual stability analysis methods for the system
dynamics of LMN (Hametner et al., 2014) are not applicable to the
internal dynamics. To assess the global stability of an LMN, these
methods try to formulate a suitable Lyapunov function, which
eventually leads to linear matrix inequalities, which consider
constant local system matrices only (Tanaka and Sugeno, 1992).
Applying the same methodology to assess the asymptotic stability
of the internal dynamics would require for example the common
2 with affine terms in the external dynamics.



Table 1
Classification of systems.

Partitioning

~M ¼∅ ~Ma∅

Loc. Num. Poly.
jMj ¼ 1 No internal dynamics No internal dynamics

for causal choice of partitioning
jMj41 Check stability

of internal dynamics
Check stability of internal
dynamics

Fig. 5. Phase plane of an operating point (OP) transition with exemplary trajec-
tories of the internal states.
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quadratic Lyapunov function

VðkÞ ¼ ~ηTðkÞP ~ηðkÞ; ð61Þ
using a constant positive definite matrix P, to decrease strictly
monotonically over time. However, in contrast to the stability assess-
ment of LMN, the system matrix ~AηηðkÞ of the internal dynamics
changes with the trajectory at each point in time so that an untract-
able number of LMIs would result. As a physically inspired supple-
ment, the strongly related concept of passivity theory (e.g. Slotine and
Li, 1991) could also be applied to assess whether the internal dynamics
represent a passive system. In that case, the stability of the internal
dynamics would be guaranteed for any trajectory.

Further, the eigenvalues of the right lower block ~AηηðkÞ can be
considered at each point in time. Each eigenvalue represents the
momentary location of the internal dynamics' poles. In this way,
an eigenvalue scatter plot can be generated for any trajectory. It
reveals if a pole lies outside of the unit circle at any point in time of
the simulated trajectory.

However, for the considered system structure, stability cannot
be characterized by the location of the eigenvalues of ~AηηðkÞ alone.
Considering the transformation ~ηðkÞ ¼ EðkÞνðkÞ, where EðkÞ is the
momentary eigenvector basis of ~AηηðkÞ and ΛðkÞ a diagonal matrix
with the eigenvalues of ~AηηðkÞ as its diagonal elements, (60)
transforms to

νðkþ1Þ ¼ E�1ðkþ1ÞEðkÞΛðkÞνðkÞ ð62Þ
with the excitation ~ξðkÞ omitted. In (62) it becomes obvious that
the resulting transformed system would be decoupled with its
poles equal to the eigenvalues ΛðkÞ only if the product E�1ðkþ1Þ
EðkÞ was equal to the identity matrix. In other words, the faster the
eigenvector basis changes, the stronger is the coupling of the
states νðkÞ as well as the deviation from the momentary eigenva-
lues ΛðkÞ. In particular, by considering the spectral norm of the
matrix product E�1ðkþ1ÞEðkÞΛðkÞ as a measure of the dilation or
contraction of ν over time, the following inequality holds for
exponential stability:

‖E�1ðkþ1ÞEðkÞΛðkÞ‖2r‖E�1ðkþ1ÞEðkÞ‖2‖ΛðkÞ‖2o1: ð63Þ
This criterion in conjunction with the eigenvalues itself could
serve as another starting point in the assessment of stability.

When operating points are considered, ~AηηðkÞ as well as its
eigenvector basis EðkÞ remains constant as the desired reference
trajectory remains constant also. Thus, for assessing whether an
operating point has stable internal dynamics, the consideration of the
eigenvalues of ~AηηðkÞ is sufficient. Additionally, to ensure that the
system can transition from one operating point to another in a stable
way, the η-trajectory (see an exemplary phase plane plot in Fig. 5)
has to remain bounded such that the resulting feedforward control
input signal remains bounded, or even more restrictive adheres to
input signal constraints.

Altogether, for the practical application of feedforward control
in the presence of internal dynamics, only momentary stability
assertions related to operating points can be made. Although the
assessment of a stationary operating point is directly possible, a
global stability proof is still the topic of ongoing research. When
dynamic feedforward control is intended, the application to a
model with full relative degree is beneficial.
5. Results

In this section an illustrative example shows state trajectories
as well as the internal dynamics of an LMN with two local models.
In addition, experimental results for the pre-distortion of a
microelectromechanical systems (MEMS) loudspeaker demon-
strate the successful application to a non-linear physical process.

5.1. Illustrative example

A synthetic LMN with two local models and a model structure
using M¼ 3; 4; 5f g and N ¼ 1; 2; 3f g is used to illustrate the
described approach. The system matrix, the input vector and the local
affine term, as described in Section 2, contain the following values:

A1 ¼

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

0:09 �0:3 0:5 0 0:4 �1:3 1:8

2
666666666664

3
777777777775

ð64aÞ

A2 ¼

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

0:72 �1:44 0:8 0 0:45 �1:77 2:3

2
666666666664

3
777777777775

ð64bÞ

BT
1 ¼ BT

2 ¼ 0 0 0 1 0 0 0½ � ð65Þ

f T1 ¼ 0 0 0 0 0 0 0:5½ � ð66aÞ

f T2 ¼ 0 0 0 0 0 0 �0:5½ �: ð66bÞ
The partitioning considers the output only, thus ~N ¼ 1f g and ~M ¼∅
holds. In particular, in this illustrative example the validity functions
have been chosen arbitrarily and parameterized manually. They are
defined as

Φ1ðkÞ ¼
1þtanh 1:5 ŷðk�1Þ� 	

2
ð67aÞ

Φ2ðkÞ ¼ 1�Φ1ðkÞ ð67bÞ



Fig. 6. Upper panel: trajectory of the external states ξi and lower panel: trajectory
of the internal states ηi.

Fig. 7. Feedforward control input signal u(k).

Fig. 8. Contour plot of validity functions (thick solid lines), the identification data
(grey dots) and the local equilibria lines (thin solid lines).
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The relative degree according to (39) yields δ¼3 and the system order
of the non-minimum realization state space model is seven, thus there
are three external and four internal states in the transformed system.

Feedforward control is used to track a desired reference tra-
jectory, which is comprised of low-pass filtered steps. In Fig. 6 the
states of the transformed system are shown. In the upper panel,
the external states ξ represent time shifts of the output, wherein
ξ1 is equivalent to the tracked trajectory w(k). The internal states
ηðkÞ can be observed in the lower panel. In Fig. 7 the feedforward
input signal u(k) is depicted. As it is obvious from Fig. 4, the input
transformation used for calculating u(k) uses both, the external
and the internal states. Thus, the oscillations in ηðkÞ, which are
induced by the internal dynamics, directly influence the required
input signal to track the desired trajectory. Unstable internal
dynamics would therefore lead to an unbounded input signal.

5.2. Experimental results

To demonstrate the application of the proposed dynamic
feedforward control using LMN, a non-linear MEMS loudspeaker
with electrostatic actuation (Tumpold et al., 2014, 2015) is con-
sidered without a feedback control part. The MEMS speaker con-
sists of two circular shaped electrodes with a two micrometer air
gap between them. The top electrode represents the back-plate or
stator and consists of a 600 nm polysilicon (poly)conductor coated
with a 140 nm silicon nitride (SiNi) insulation layer. The bottom
electrode is represented by a 330 nm polysilicon layer. Because of
the high intrinsic tensile pre-stress of the back-plate of about
1 GPa compared to the intrinsic tensile pre-stress of the mem-
brane with about 43 MPa, the back-plate can be assumed as stiff
and the membrane as flexible. Non-linearities in the MEMS
speaker are caused by large mechanical deformation, the multi-
layered structure and the electrostatic force itself. By applying a
voltage in the range from 0 to 10 Vpp as input signal, the mem-
brane is displaced non-linearly and the resulting displacement (0–
0.35 μmpp), which is measured by a laser vibrometer, is considered
as the output. Since oscillations in nanometer scale are recorded,
the vibrometer sensor head and the MEMS speaker have been
arranged on an actively air damped vibration insulated table,
which is located on a decoupled foundation (Tumpold et al., 2015).
With this setup, low frequency vibrations from the environment
could have been avoided.

Using an amplitude-modulated pseudo-random binary sequence
as excitation, input–output data have been measured at 12.5 MHz
and downsampled to a sampling frequency of 500 kHz, which is
high enough to avoid aliasing effects in the considered frequency
range of the human auditory system. A LMN with five local models
and a model structure with sets M¼ f2g and N ¼ f1;2g were
identified. Therein, the shape and width of the validity functions
(sigmoid functions) has been prescribed, but the local model
parameters as well as the partitioning parameters of the hier-
archical discriminant tree have been subject to simultaneous opti-
mization using non-linear least squares (Hametner and Jakubek,
2013). The partitioning considers the input as well as the output
with ~M ¼ f2g and ~N ¼ f1g. Thus, according to the system classifi-
cation in Table 1, no internal dynamics appear.

In Fig. 8 the identification data are shown and local models are
represented by contour lines of their validity functions. As each
local model is linear, a local equilibrium line can be found within
each region of validity. These lines are also visible in Fig. 8. The
measurement data clearly show that there appear strong transients,
which require the output as well as the input in the partition space.

Fig. 9 illustrates the non-linear membrane displacement of the
MEMS speaker for a 1 kHz triangular input signal with 10 Vpp and
no feedforward control. Finally, the resulting feedforward control
law reads as follows:

wðkþ2Þ�cT AðΦkþ1ÞAðΦkÞwkþAðΦkþ1ÞBðΦkÞuðkÞ
�

þAðΦkþ1Þf ðΦkÞþ f ðΦkþ1Þ
�¼ 0: ð68Þ



Fig. 10. Pre-distorted input signal for a 1 kHz/0.35 μm triangular reference.

Fig. 11. Reference signal (dashed line) and resulting membrane displacement (solid
line) using the pre-distorted input signal from Fig. 10.

Fig. 9. Response to a 1 kHz/10 Vpp triangular input signal with the reference shown
as dashed line and the measured output as solid line.
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Note that (68) is an implicit equation as u(k) does not only appear
explicitly but also in Φkþ1.

The pre-distorted input signal found by the dynamic feedfor-
ward control law is shown in Fig. 10. It has been evaluated offline
on a standard desktop computer using Matlab and has been
applied to the MEMS speaker by means of a signal generator
afterwards. This simple setup is possible as no feedback part is
considered in this application. Finally, the resulting membrane
displacement is given in Fig. 11. It becomes apparent that the
membrane displacement dynamically follows the desired refer-
ence in an accurate way by using the proposed feedforward con-
trol already without feedback.
6. Conclusion and outlook

The application of feedback linearization to the generic model
structure of local model networks yields a dynamic feedforward
control law, which can be beneficially exploited in pre-distortion
or two-degrees-of-freedom control schemes for example. For the
automatic generation of the feedforward control law only input
and output data of the underlying non-linear process are required.
Altogether, directly from a greybox forward model with physical
interpretability the inverse model is found. When the chosen
model structure happens not to have full relative degree, the
stability of the internal dynamics has to be checked. However, due
to their complex structure, a global method to assess the stability
is not yet available. By considering the eigenvalues of the internal
dynamics, at least a momentary assertion can be made.

As the described state space representation and the choice of
the state vector definition (3) is only one possible way to describe
the input–output relation, other choices could be thought of as
well. To find a state vector definition in an optimal way during
system identification, there exist well-known subspace identifi-
cation techniques (van Overschee and de Moor, 1994). In further
research work, it will be investigated how these techniques can be
applied to the local model network framework.
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